Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.

Original languageEnglish
Title of host publicationRadiofrequency Power in Plasmas - Proceedings of the 20th Topical Conference
PublisherAmerican Institute of Physics Inc.
Pages358-361
Number of pages4
ISBN (Print)9780735412101
DOIs
Publication statusPublished - 2014
Event20th Topical Conference on Radiofrequency Power in Plasmas - Sorrento, Italy
Duration: 25 Jun 201328 Jun 2013

Publication series

NameAIP Conference Proceedings
Volume1580
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference20th Topical Conference on Radiofrequency Power in Plasmas
Country/TerritoryItaly
CitySorrento
Period25/06/1328/06/13

Keywords

  • ICRH
  • antenna
  • mode excitation
  • periodic structures

Fingerprint

Dive into the research topics of 'Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas'. Together they form a unique fingerprint.

Cite this