Simulation of cold magnetized plasmas with the 3D electromagnetic software CST Microwave Studio®

Fabrice Louche, Alena Křivská, André Messiaen, Tom Wauters

Research output: Contribution to journalConference articlepeer-review

Abstract

Detailed designs of ICRF antennas were made possible by the development of sophisticated commercial 3D codes like CST Microwave Studio® (MWS). This program allows for very detailed geometries of the radiating structures, but was only considering simple materials like equivalent isotropic dielectrics to simulate the reflection and the refraction of RF waves at the vacuum/plasma interface. The code was nevertheless used intensively, notably for computing the coupling properties of the ITER ICRF antenna. Until recently it was not possible to simulate gyrotropic medias like magnetized plasmas, but recent improvements have allowed programming any material described by a general dielectric or/and diamagnetic tensor. A Visual Basic macro was developed to exploit this feature and was tested for the specific case of a monochromatic plane wave propagating longitudinally with respect to the magnetic field direction. For specific cases the exact solution can be expressed in 1D as the sum of two circularly polarized waves connected by a reflection coefficient that can be analytically computed. Solutions for stratified media can also be derived. This allows for a direct comparison with MWS results. The agreement is excellent but accurate simulations for realistic geometries require large memory resources that could significantly restrict the possibility of simulating cold plasmas to small-scale machines.

Original languageEnglish
Article number03031
JournalEPJ Web of Conferences
Volume157
DOIs
Publication statusPublished - 23 Oct 2017
Event22nd Topical Conference on Radio-Frequency Power in Plasmas 2017 - Aix en Provence, France
Duration: 30 May 20172 Jun 2017

Fingerprint

Dive into the research topics of 'Simulation of cold magnetized plasmas with the 3D electromagnetic software CST Microwave Studio®'. Together they form a unique fingerprint.

Cite this