Abstract
This paper addresses a critical issue in seabed characterization with deep learning semantic segmentation using high-resolution Synthetic Aperture Sonar (SAS) data, that we call Catastrophic Receptive Field Overflow (CRFO). We propose novel methods, including Mosaic Augmentation and Homogeneous Patch Rejection, to (1) effectively mitigate CRFO and (2) enhance model performance. Through experiments on real-world SAS data, we investigate the origins of CRFO, revealing its dependence on model architectures and data characteristics. The presented solutions exhibit promising results, whether measured in terms of Overall Accuracy or the reliability of models in inference across various image input sizes or aspect ratios, in the face of new proposed metrics. These findings provide valuable insights for addressing CRFO challenges in tasks involving relatively homogeneous datasets.
Original language | English |
---|---|
Pages | 9561-9565 |
Number of pages | 5 |
DOIs | |
Publication status | Published - 2024 |
Event | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, Greece Duration: 7 Jul 2024 → 12 Jul 2024 |
Conference
Conference | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 |
---|---|
Country/Territory | Greece |
City | Athens |
Period | 7/07/24 → 12/07/24 |
Keywords
- Deep Learning
- Remote Sensing
- Seabed Characterization
- Semantic Segmentation