Abstract
An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
Original language | English |
---|---|
Article number | 042006 |
Journal | Nuclear Fusion |
Volume | 62 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2022 |
Keywords
- Asdex Upgrade
- ELLM-free discharges
- confinement
Fingerprint
Dive into the research topics of 'Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Nuclear Fusion, Vol. 62, No. 4, 042006, 04.2022.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
AU - Stroth, U.
AU - Aguiam, D.
AU - Alessi, E.
AU - Angioni, C.
AU - Arden, N.
AU - Parra, R. Arredondo
AU - Artigues, V.
AU - Asunta, O.
AU - Balden, M.
AU - Bandaru, V.
AU - Banon-Navarro, A.
AU - Behler, K.
AU - Bergmann, A.
AU - Bergmann, M.
AU - Bernardo, J.
AU - Bernert, M.
AU - Biancalani, A.
AU - Bielajew, R.
AU - Bilato, R.
AU - Birkenmeier, G.
AU - Blanken, T.
AU - Bobkov, V.
AU - Bock, A.
AU - Body, T.
AU - Bolzonella, T.
AU - Bonanomi, N.
AU - Bortolon, A.
AU - Böswirth, B.
AU - Bottereau, C.
AU - Bottino, A.
AU - Van Den Brand, H.
AU - Brenzke, M.
AU - Brezinsek, S.
AU - Brida, D.
AU - Brochard, F.
AU - Bruhn, C.
AU - Buchanan, J.
AU - Buhler, A.
AU - Burckhart, A.
AU - Camenen, Y.
AU - Cannas, B.
AU - Megias, P. Cano
AU - Carlton, D.
AU - Carr, M.
AU - Carvalho, P.
AU - Castaldo, C.
AU - Cavedon, M.
AU - Cazzaniga, C.
AU - Challis, C.
AU - Chankin, A.
AU - Cianfarani, C.
AU - Clairet, F.
AU - Coda, S.
AU - Coelho, R.
AU - Coenen, J. W.
AU - Colas, L.
AU - Conway, G.
AU - Costea, S.
AU - Coster, D.
AU - Cote, T.
AU - Creely, A. J.
AU - Croci, G.
AU - Zabala, D. J.Cruz
AU - Cseh, G.
AU - Czarnecka, A.
AU - Cziegler, I.
AU - D'Arcangelo, O.
AU - Molin, A. Dal
AU - David, P.
AU - Day, C.
AU - De Baar, M.
AU - De Marné, P.
AU - Delogu, R.
AU - Denk, S.
AU - Denner, P.
AU - Di Siena, A.
AU - Palacios Durán, J. J.Dominguez
AU - Dunai, D.
AU - Drenik, A.
AU - Dreval, M.
AU - Drube, R.
AU - Dunne, M.
AU - Duval, B. P.
AU - Dux, R.
AU - Eich, T.
AU - Elgeti, S.
AU - Encheva, A.
AU - Engelhardt, K.
AU - Erdös, B.
AU - Erofeev, I.
AU - Esposito, B.
AU - Fable, E.
AU - Faitsch, M.
AU - Fantz, U.
AU - Farnik, M.
AU - Faugel, H.
AU - Felici, F.
AU - Ficker, O.
AU - Fietz, S.
AU - Figueredo, A.
AU - Fischer, R.
AU - Ford, O.
AU - Frassinetti, L.
AU - Fröschle, M.
AU - Fuchert, G.
AU - Fuchs, J. C.
AU - Fünfgelder, H.
AU - Futatani, S.
AU - Galazka, K.
AU - Galdon-Quiroga, J.
AU - Escolà, D. Gallart
AU - Gallo, A.
AU - Gao, Y.
AU - Garavaglia, S.
AU - Muñoz, M. Garcia
AU - Geiger, B.
AU - Giannone, L.
AU - Gibson, S.
AU - Gil, L.
AU - Giovannozzi, E.
AU - Glöggler, S.
AU - Gobbin, M.
AU - Martin, J. Gonzalez
AU - Goodman, T.
AU - Gorini, G.
AU - Görler, T.
AU - Gradic, D.
AU - Granucci, G.
AU - Gräter, A.
AU - Greuner, H.
AU - Griener, M.
AU - Groth, M.
AU - Gude, A.
AU - Guimarais, L.
AU - Günter, S.
AU - Haas, G.
AU - Hakola, A. H.
AU - Ham, C.
AU - Happel, T.
AU - Den Harder, N.
AU - Harrer, G.
AU - Harrison, J.
AU - Hauer, V.
AU - Hayward-Schneider, T.
AU - Heinemann, B.
AU - Hellsten, T.
AU - Henderson, S.
AU - Hennequin, P.
AU - Herrmann, A.
AU - Heyn, E.
AU - Hitzler, F.
AU - Hobirk, J.
AU - Höfler, K.
AU - Holm, J. H.
AU - Hölzl, M.
AU - Hopf, C.
AU - Horvath, L.
AU - Höschen, T.
AU - Houben, A.
AU - Hubbard, A.
AU - Huber, A.
AU - Hunger, K.
AU - Igochine, V.
AU - Iliasova, M.
AU - Ilkei, T.
AU - Björk, K. Insulander
AU - Ionita-Schrittwieser, C.
AU - Ivanova-Stanik, I.
AU - Jacob, W.
AU - Jaksic, N.
AU - Janky, F.
AU - Jansen Van Vuuren, A.
AU - Jardin, A.
AU - Jaulmes, F.
AU - Jenko, F.
AU - Jensen, T.
AU - Joffrin, E.
AU - Kallenbach, A.
AU - Kálvin, S.
AU - Kantor, M.
AU - Kappatou, A.
AU - Kardaun, O.
AU - Karhunen, J.
AU - Käsemann, C. P.
AU - Kasilov, S.
AU - Kendl, A.
AU - Kernbichler, W.
AU - Khilkevitch, E.
AU - Kirk, A.
AU - Hansen, S. Kjer
AU - Klevarova, V.
AU - Kocsis, G.
AU - Koleva, M.
AU - Komm, M.
AU - Kong, M.
AU - Krämer-Flecken, A.
AU - Krieger, K.
AU - Krivska, A.
AU - Kudlacek, O.
AU - Kurki-Suonio, T.
AU - Kurzan, B.
AU - Labit, B.
AU - Lackner, K.
AU - Laggner, F.
AU - Lahtinen, A.
AU - Lang, P. T.
AU - Lauber, P.
AU - Leuthold, N.
AU - Li, L.
AU - Likonen, J.
AU - Linder, O.
AU - Lipschultz, B.
AU - Liu, Y.
AU - Lohs, A.
AU - Lu, Z.
AU - Luda Di Cortemiglia, T.
AU - Luhmann, N. C.
AU - Lunt, T.
AU - Lyssoivan, A.
AU - Maceina, T.
AU - Madsen, J.
AU - Magnanimo, A.
AU - Maier, H.
AU - Mailloux, J.
AU - Maingi, R.
AU - Maj, O.
AU - Maljaars, E.
AU - Manas, P.
AU - Mancini, A.
AU - Manhard, A.
AU - Mantica, P.
AU - Mantsinen, M.
AU - Manz, P.
AU - Maraschek, M.
AU - Marchetto, C.
AU - Marrelli, L.
AU - Martin, P.
AU - Martitsch, A.
AU - Matos, F.
AU - Mayer, M.
AU - Mayoral, M. L.
AU - Mazon, D.
AU - McCarthy, P. J.
AU - McDermott, R.
AU - Merkel, R.
AU - Merle, A.
AU - Meshcheriakov, D.
AU - Meyer, H.
AU - Milanesio, D.
AU - Cabrera, P. Molina
AU - Monaco, F.
AU - Muraca, M.
AU - Nabais, F.
AU - Naulin, V.
AU - Nazikian, R.
AU - Nem, R. D.
AU - Nemes-Czopf, A.
AU - Neu, G.
AU - Neu, R.
AU - Nielsen, A. H.
AU - Nielsen, S. K.
AU - Nishizawa, T.
AU - Nocente, M.
AU - Noterdaeme, J. M.
AU - Novikau, I.
AU - Nowak, S.
AU - Oberkofler, M.
AU - Ochoukov, R.
AU - Olsen, J.
AU - Orain, F.
AU - Palermo, F.
AU - Pan, O.
AU - Papp, G.
AU - Perez, I. Paradela
AU - Pau, A.
AU - Pautasso, G.
AU - Paz-Soldan, C.
AU - Petersson, P.
AU - Piovesan, P.
AU - Piron, C.
AU - Plank, U.
AU - Plaum, B.
AU - Plöck, B.
AU - Plyusnin, V.
AU - Pokol, G.
AU - Poli, E.
AU - Porte, L.
AU - Pütterich, T.
AU - Ramisch, M.
AU - Rasmussen, J.
AU - Ratta, G.
AU - Ratynskaia, S.
AU - Raupp, G.
AU - Réfy, D.
AU - Reich, M.
AU - Reimold, F.
AU - Reiser, D.
AU - Reisner, M.
AU - Reiter, D.
AU - Ribeiro, T.
AU - Riedl, R.
AU - Riesch, J.
AU - Rittich, D.
AU - Rodriguez, J. F.Rivero
AU - Rocchi, G.
AU - Rodriguez-Fernandez, P.
AU - Rodriguez-Ramos, M.
AU - Rohde, V.
AU - Ronchi, G.
AU - Ross, A.
AU - Rott, M.
AU - Rubel, M.
AU - Ryan, D. A.
AU - Ryter, F.
AU - Saarelma, S.
AU - Salewski, M.
AU - Salmi, A.
AU - Samoylov, O.
AU - Sanchez, L. Sanchis
AU - Santos, J.
AU - Sauter, O.
AU - Schall, G.
AU - Schlüter, K.
AU - Schmid, K.
AU - Schmitz, O.
AU - Schneider, P. A.
AU - Schrittwieser, R.
AU - Schubert, M.
AU - Schuster, C.
AU - Schwarz-Selinger, T.
AU - Schweinzer, J.
AU - Seliunin, E.
AU - Shabbir, A.
AU - Shalpegin, A.
AU - Sharapov, S.
AU - Sheikh, U.
AU - Shevelev, A.
AU - Sias, G.
AU - Siccinio, M.
AU - Sieglin, B.
AU - Sigalov, A.
AU - Silva, A.
AU - Silva, C.
AU - Silvagni, D.
AU - Simpson, J.
AU - Sipilä, S.
AU - Smigelskis, E.
AU - Snicker, A.
AU - Solano, E.
AU - Sommariva, C.
AU - Sozzi, C.
AU - Spizzo, G.
AU - Spolaore, M.
AU - Stegmeir, A.
AU - Stejner, M.
AU - Stober, J.
AU - Strumberge, E.
AU - Lopez, G. Suarez
AU - Sun, H. J.
AU - Suttrop, W.
AU - Sytova, E.
AU - Szepesi, T.
AU - Tál, B.
AU - Tala, T.
AU - Tardini, G.
AU - Tardocchi, M.
AU - Terranova, D.
AU - Teschke, M.
AU - Thorén, E.
AU - Tierens, W.
AU - Told, D.
AU - Treutterer, W.
AU - Trevisan, G.
AU - Trier, E.
AU - Tripský, M.
AU - Usoltceva, M.
AU - Valisa, M.
AU - Valovic, M.
AU - Van Zeeland, M.
AU - Vannini, F.
AU - Vanovac, B.
AU - Varela, P.
AU - Varoutis, S.
AU - Vianello, N.
AU - Vicente, J.
AU - Verdoolaege, G.
AU - Vierle, T.
AU - Viezzer, E.
AU - Voitsekhovitch, I.
AU - Von Toussaint, U.
AU - Wagner, D.
AU - Wang, X.
AU - Weiland, M.
AU - White, A. E.
AU - Willensdorfer, M.
AU - Wiringer, B.
AU - Wischmeier, M.
AU - Wolf, R.
AU - Wolfrum, E.
AU - Yang, Q.
AU - Yu, Q.
AU - Zagórski, R.
AU - Zammuto, I.
AU - Zehetbauer, T.
AU - Zhang, W.
AU - Zholobenko, W.
AU - Zilker, M.
AU - Zito, A.
AU - Zohm, H.
AU - Zoletnik, S.
N1 - Publisher Copyright: © EURATOM 2022.
PY - 2022/4
Y1 - 2022/4
N2 - An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
AB - An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
KW - Asdex Upgrade
KW - ELLM-free discharges
KW - confinement
UR - http://www.scopus.com/inward/record.url?scp=85117123924&partnerID=8YFLogxK
U2 - 10.1088/1741-4326/ac207f
DO - 10.1088/1741-4326/ac207f
M3 - Article
AN - SCOPUS:85117123924
SN - 0029-5515
VL - 62
JO - Nuclear Fusion
JF - Nuclear Fusion
IS - 4
M1 - 042006
ER -