Plasma tomographic reconstruction from tangentially viewing camera with background subtraction

M. Odstrčil, J. Mlynář, V. Weinzettl, P. Háček, T. Odstrčil, G. Verdoolaege, M. Berta, T. Szabolics, A. Bencze

Research output: Contribution to journalArticlepeer-review

Abstract

Light reflections are one of the main and often underestimated issues of plasma emissivity reconstruction in visible light spectral range. Metallic and other specular components of tokamak generate systematic errors in the optical measurements that could lead to wrong interpretation of data. Our analysis is performed at data from the tokamak COMPASS. It is a D-shaped tokamak with specular metallic vessel and possibility of the H-mode plasma. Data from fast visible light camera were used for tomographic reconstruction with background reflections subtraction to study plasma boundary. In this article, we show that despite highly specular tokamak wall, it is possible to obtain a realistic reconstruction. The developed algorithm shows robust results despite of systematic errors in the optical measurements and calibration. The motivation is to obtain an independent estimate of the plasma boundary shape.

Original languageEnglish
Article number013509
JournalReview of Scientific Instruments
Volume85
Issue number1
DOIs
Publication statusPublished - Jan 2014

Fingerprint

Dive into the research topics of 'Plasma tomographic reconstruction from tangentially viewing camera with background subtraction'. Together they form a unique fingerprint.

Cite this