NUMERICAL ANALYSIS OF THE DYNAMIC MECHANICAL BEHAVIOR OF HIGH STRENGTH ALUMINUM ALLOY AA2014-T652 UNDER HIGH IMPACT VELOCITY

Oussama Atoui, Azer Maazoun, Abdelhafidh Moumen, Bachir Belkassem, Lincy Pyl, David Lecompte

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The present paper deals with the numerical analysis of the impact and perforation of a high velocity rigid steel spherical projectile through an Aluminum plate AA2014-T652 using the commercial software LS-DYNA. These numerical investigations are performed in the velocity range from 800 m/s to 1300 m/s. The target plate with a thickness of 15mm and the spherical projectile with a diameter of 10mm are modelled using three-dimensional elements (3D) in a Lagrangian formulation. A hydrostatic tensile stress failure model combined with the Johnson and Cook constitutive model is used to highlight the dynamic failure of the target. The different failure mechanisms observed on the Aluminum plate from the moment of impact to full perforation are discussed. The numerical results based on the crater diameter at the front and rear surface of the plate and the dimensions of the penetration channel are compared to the experimental data available in literature.

Original languageEnglish
Title of host publicationExterior Ballistics, Terminal Ballistics
EditorsThelma G. Manning, Frederick C. Rickert
PublisherDEStech Publications
Pages1209-1221
Number of pages13
ISBN (Electronic)9781605956893
Publication statusPublished - 2022
Event32nd International Symposium on Ballistics, BALLISTICS 2022 - Reno, United States
Duration: 9 May 202213 May 2022

Publication series

NameProceedings - 32nd International Symposium on Ballistics, BALLISTICS 2022
Volume2

Conference

Conference32nd International Symposium on Ballistics, BALLISTICS 2022
Country/TerritoryUnited States
CityReno
Period9/05/2213/05/22

Fingerprint

Dive into the research topics of 'NUMERICAL ANALYSIS OF THE DYNAMIC MECHANICAL BEHAVIOR OF HIGH STRENGTH ALUMINUM ALLOY AA2014-T652 UNDER HIGH IMPACT VELOCITY'. Together they form a unique fingerprint.

Cite this