TY - JOUR
T1 - Neon radiation efficiency for different confinement regimes in TEXTOR-94
AU - Telesca, G.
AU - Unterberg, B.
AU - Jaspers, R.
AU - Messiaen, A. M.
AU - Ongena, J.
AU - Rapp, J.
AU - Samm, U.
AU - Schoon, N.
AU - Lehnen, M.
AU - Tokar', M.
AU - Van Oost, G.
AU - Zagorski, R.
PY - 2000/11
Y1 - 2000/11
N2 - For neon seeded discharges the quantity [ΔPrad/ΔZeff(0)]/n̄e02, which depends linearly on the effective neon cooling rates and which can be taken as a measure of the radiation efficiency of neon, is not a constant for a given machine. When, according to the mode of operation, [ΔPrad/ΔZeff(0)]/n̄e02 is high, radiative power exhaust can be efficiently achieved at low Zeff. The value of this ratio, which we refer to as the quality of neon cooling, is found to be correlated not only with the plasma edge temperature but also, and even more strongly, with the confinement properties of the discharges. Two different high confinement radiative regimes in TEXTOR-94 have been compared: radiative improved (RI) mode (highest confinement) and gas puff/pure radiofrequency mode (slightly lower confinement). Although the electron temperature profile is similar in the two regimes, due to feedback control of the input power level, it has been found experimentally that the quality of neon cooling is lower for the RI mode than for the gas puff/pure radiofrequency one. Similar behaviour has been observed for the quality of cooling of the residual intrinsic carbon, determined with independent diagnostics and methods. Simulations with the self-consistent RITM code confirm that particle transport, in particular the perpendicular diffusivity at the edge, is a key parameter to determine the level of the power radiated at the edge for a given impurity concentration in the plasma core.
AB - For neon seeded discharges the quantity [ΔPrad/ΔZeff(0)]/n̄e02, which depends linearly on the effective neon cooling rates and which can be taken as a measure of the radiation efficiency of neon, is not a constant for a given machine. When, according to the mode of operation, [ΔPrad/ΔZeff(0)]/n̄e02 is high, radiative power exhaust can be efficiently achieved at low Zeff. The value of this ratio, which we refer to as the quality of neon cooling, is found to be correlated not only with the plasma edge temperature but also, and even more strongly, with the confinement properties of the discharges. Two different high confinement radiative regimes in TEXTOR-94 have been compared: radiative improved (RI) mode (highest confinement) and gas puff/pure radiofrequency mode (slightly lower confinement). Although the electron temperature profile is similar in the two regimes, due to feedback control of the input power level, it has been found experimentally that the quality of neon cooling is lower for the RI mode than for the gas puff/pure radiofrequency one. Similar behaviour has been observed for the quality of cooling of the residual intrinsic carbon, determined with independent diagnostics and methods. Simulations with the self-consistent RITM code confirm that particle transport, in particular the perpendicular diffusivity at the edge, is a key parameter to determine the level of the power radiated at the edge for a given impurity concentration in the plasma core.
UR - http://www.scopus.com/inward/record.url?scp=0034319470&partnerID=8YFLogxK
U2 - 10.1088/0029-5515/40/11/304
DO - 10.1088/0029-5515/40/11/304
M3 - Article
AN - SCOPUS:0034319470
SN - 0029-5515
VL - 40
SP - 1845
EP - 1858
JO - Nuclear Fusion
JF - Nuclear Fusion
IS - 11
ER -