TY - JOUR
T1 - Interpretation of radiative divertor studies with impurity seeding in type-I ELMy H-mode plasmas in JET-ILW using EDGE2D-EIRENE
AU - JET-EFDA collaborators
AU - Jaervinen, A. E.
AU - Groth, M.
AU - Airila, M.
AU - Belo, P.
AU - Beurskens, M.
AU - Brezinsek, S.
AU - Clever, M.
AU - Corrigan, G.
AU - Devaux, S.
AU - Drewelow, P.
AU - Eich, T.
AU - Giroud, C.
AU - Harting, D.
AU - Huber, A.
AU - Jachmich, S.
AU - Lawson, K.
AU - Lipschultz, B.
AU - Maddison, G.
AU - Maggi, C.
AU - Makkonen, T.
AU - Marchetto, C.
AU - Marsen, S.
AU - Matthews, G. F.
AU - Meigs, A. G.
AU - Moulton, D.
AU - Stamp, M. F.
AU - Wiesen, S.
AU - Wischmeier, M.
N1 - Publisher Copyright:
© 2013 EURATOM.
PY - 2015/7/22
Y1 - 2015/7/22
N2 - Abstract Nitrogen seeded JET-ILW H-mode plasmas have been investigated with EDGE2D-EIRENE. The simulations reproduce the experimentally observed factor of 10 reduction in the outer target power deposition when the normalized divertor radiation, Praddiv/PSOL, increases from the unseeded levels of 15% up to the 50% levels required for detachment. At these radiation levels, nitrogen is predicted dominate the total radiation with a contribution of 85%, consistent with previous measurements in JET-C. Due to the low radiative potential of nitrogen at the electron temperatures above 100 eV, more than 80% of the radiation is predicted to occur in the scrape-off layer, making nitrogen a suitable divertor radiator for typical JET divertor conditions with Te around 30 eV. The simulations reproduce the experimentally observed particle flux reduction at the low-field side target without the need for strong recombination. This is due to strong impurity radiation reducing the power levels entering the deuterium ionization front.
AB - Abstract Nitrogen seeded JET-ILW H-mode plasmas have been investigated with EDGE2D-EIRENE. The simulations reproduce the experimentally observed factor of 10 reduction in the outer target power deposition when the normalized divertor radiation, Praddiv/PSOL, increases from the unseeded levels of 15% up to the 50% levels required for detachment. At these radiation levels, nitrogen is predicted dominate the total radiation with a contribution of 85%, consistent with previous measurements in JET-C. Due to the low radiative potential of nitrogen at the electron temperatures above 100 eV, more than 80% of the radiation is predicted to occur in the scrape-off layer, making nitrogen a suitable divertor radiator for typical JET divertor conditions with Te around 30 eV. The simulations reproduce the experimentally observed particle flux reduction at the low-field side target without the need for strong recombination. This is due to strong impurity radiation reducing the power levels entering the deuterium ionization front.
UR - http://www.scopus.com/inward/record.url?scp=84937677823&partnerID=8YFLogxK
U2 - 10.1016/j.jnucmat.2014.10.047
DO - 10.1016/j.jnucmat.2014.10.047
M3 - Article
AN - SCOPUS:84937677823
SN - 0022-3115
VL - 463
SP - 135
EP - 142
JO - Journal of Nuclear Materials
JF - Journal of Nuclear Materials
M1 - 48544
ER -