TY - JOUR
T1 - Gyrokinetic Stability Analysis of JET Pedestal Top Plasmas with Small-ELMs
AU - Dicorato, M.
AU - Muraglia, M.
AU - Camenen, Y.
AU - Garcia, J.
AU - Garbet, X.
AU - Frigione, D.
AU - Garzotti, L.
AU - Lomas, P.
AU - Rimini, F.
AU - Sozzi, C.
AU - Van Eester, D.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2022
Y1 - 2022
N2 - In recent years, a strong effort has been dedicated to the development of tokamak plasma regimes alternative to the standard high confinement mode (H-mode) with type-I edge localized mode (ELM), i.e. ELM-free and small-ELM regimes, given the associated hardly sustainable energy and particle fluxes on plasma facing components. In this work, we will focus on new H-mode regimes with small-ELMs, the so-called baseline small-ELMs (BSE), characterized by high thermal confinement and low core impurity accumulation, which have been recently found at JET. In order to characterize the micro-turbulence at play at the top of the pedestal, an extensive local linear gyrokinetic analysis with the GKW code has been carried out. In particular, a comparison between a reference type-I ELM (#97395) and two BSE plasmas (#96994 and #94442) has been performed. The ion-scale (0.1 ≤ k θ ρ i ≤ 2) micro-turbulence is found to have different characteristics in the two regimes. Indeed, kinetic-ballooning modes (KBM) are destabilized in the type-I ELM regime at k θ ρ i ∼0.1, while they are stable in BSE regimes. In addition, negative (i.e. electron-diamagnetic-direction) frequency modes, identified as electron-temperature-gradient (ETG) modes, are destabilized at k θ ρ i ∼1.5 in the type-I ELM regime while BSE regimes are characterized by positive (i.e. ion-diamagnetic-direction) frequency modes. Meanwhile, at electron-scale (10 ≤ k θ ρ i ≤ 700) ETG modes are the dominant micro-instabilities in both regimes. Then, since BSE regimes are characterized by a higher impurity concentration at the pedestal, particular attention has been given to the role played by them. We found that impurities represent a critical player in the linear dynamics, strongly affecting the nature of micro-instabilities at ion-scale.
AB - In recent years, a strong effort has been dedicated to the development of tokamak plasma regimes alternative to the standard high confinement mode (H-mode) with type-I edge localized mode (ELM), i.e. ELM-free and small-ELM regimes, given the associated hardly sustainable energy and particle fluxes on plasma facing components. In this work, we will focus on new H-mode regimes with small-ELMs, the so-called baseline small-ELMs (BSE), characterized by high thermal confinement and low core impurity accumulation, which have been recently found at JET. In order to characterize the micro-turbulence at play at the top of the pedestal, an extensive local linear gyrokinetic analysis with the GKW code has been carried out. In particular, a comparison between a reference type-I ELM (#97395) and two BSE plasmas (#96994 and #94442) has been performed. The ion-scale (0.1 ≤ k θ ρ i ≤ 2) micro-turbulence is found to have different characteristics in the two regimes. Indeed, kinetic-ballooning modes (KBM) are destabilized in the type-I ELM regime at k θ ρ i ∼0.1, while they are stable in BSE regimes. In addition, negative (i.e. electron-diamagnetic-direction) frequency modes, identified as electron-temperature-gradient (ETG) modes, are destabilized at k θ ρ i ∼1.5 in the type-I ELM regime while BSE regimes are characterized by positive (i.e. ion-diamagnetic-direction) frequency modes. Meanwhile, at electron-scale (10 ≤ k θ ρ i ≤ 700) ETG modes are the dominant micro-instabilities in both regimes. Then, since BSE regimes are characterized by a higher impurity concentration at the pedestal, particular attention has been given to the role played by them. We found that impurities represent a critical player in the linear dynamics, strongly affecting the nature of micro-instabilities at ion-scale.
UR - http://www.scopus.com/inward/record.url?scp=85145212006&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/2397/1/012007
DO - 10.1088/1742-6596/2397/1/012007
M3 - Conference article
AN - SCOPUS:85145212006
SN - 1742-6588
VL - 2397
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012007
T2 - 2022 Joint Varenna-Lausanne International Workshop on the Theory of Fusion Plasmas, Varenna-Lausanne 2022
Y2 - 12 September 2022 through 16 September 2022
ER -