Full wave propagation modelling in view to integrated ICRH wave coupling/RF sheaths modelling

Jonathan Jacquot, Volodymyr Bobkov, Laurent Colas, Stéphane Heuraux, Alena Křivská, Lingfeng Lu, Jean Marie Noterdaeme

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

RF sheaths rectification can be the reason for operational limits for Ion Cyclotron Range of Frequencies (ICRF) heating systems via impurity production or excessive heat loads. To simulate this process in realistic geometry, the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code is a minimal set of coupled equations that computes self-consistently wave propagation and DC plasma biasing. The present version of its wave propagation module only deals with the Slow Wave assumed to be the source of RF sheath oscillations. However the ICRF power coupling to the plasma is due to the fast wave (FW). This paper proposes to replace this one wave equation module by a full wave module in either 2D or 3D as a first step towards integrated modelling of RF sheaths and wave coupling. Since the FW is propagative in the main plasma, Perfectly Matched Layers (PMLs) adapted for plasmas were implemented at the inner side of the simulation domain to absorb outgoing waves and tested numerically with tilted B0 in Cartesian geometry, by either rotating the cold magnetized plasma dielectric tensors in 2D or rotating the coordinate vector basis in 3D. The PML was further formulated in cylindrical coordinates to account for for the toroidal curvature of the plasma. Toroidal curvature itself does not seem to change much the coupling. A detailed 3D geometrical description of Tore Supra and ASDEX Upgrade (AUG) antennas was included in the coupling code. The full antenna structure was introduced, since its toroidal symmetry with respect to the septum plane is broken (FS bars, toroidal phasing, non-symmetrical structure). Reliable convergence has been obtained with the density profile up to the leading edge of antenna limiters. Parallel electric field maps have been obtained as an input for the present version of SSWICH.

Original languageEnglish
Title of host publicationRadio Frequency Power in Plasmas
Subtitle of host publicationProceedings of the 21St Topical Conference
EditorsRobert I. Pinsker
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735413368
DOIs
Publication statusPublished - 10 Dec 2015
Event21st Topical Conference on Radiofrequency Power in Plasmas - Lake Arrowhead, United States
Duration: 27 Apr 201529 Apr 2015

Publication series

NameAIP Conference Proceedings
Volume1689
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference21st Topical Conference on Radiofrequency Power in Plasmas
Country/TerritoryUnited States
CityLake Arrowhead
Period27/04/1529/04/15

Fingerprint

Dive into the research topics of 'Full wave propagation modelling in view to integrated ICRH wave coupling/RF sheaths modelling'. Together they form a unique fingerprint.

Cite this