TY - JOUR
T1 - Ethylene glycol dinitrate (EGDN)
T2 - From commercial precursors, physicochemical and detonation characterization
AU - Fettaka, Hichem
AU - Lefebvre, Michel
PY - 2015
Y1 - 2015
N2 - Currently, liquid explosives pose a potential threat. An important phase in the assessment of this threat is to investigate the various synthesis paths leading to their manufacture and to evaluate the potential use of readily purchasable precursors. The aim of this work was to assess the synthesis of Ethylene Glycol Dinitrate (EGDN), a liquid nitrate ester explosive, using commercially available precursors. The characteristics of the synthetic process (ease, yield), the chemical properties of the synthesized product (purity, spectra) and its explosive properties (sensitivities, detonability) were investigated. Comparisons are drawn between these products and the product obtained using laboratory ingredients. Three ingredients have been used: 1) ethylene glycol, laboratory grade, 2) ready to use, commercial coolant fluid, and 3) ethylene glycol extracted from commercial coolant fluid. The chemical composition and purity of the synthesized liquid explosive was analyzed by Gas Chromatography-Mass Spectrometry (GCMS), and infrared spectroscopy (IR). Differential Scanning Calorimetric (DSC) analysis allowed the heat of decomposition and activation energies to be assessed. The Ozawa and Kissinger models were used. The explosive properties of the pure synthesized products and comparable other explosives, have been tested. The potential use as a priming charge or as a main charge was assessed.
AB - Currently, liquid explosives pose a potential threat. An important phase in the assessment of this threat is to investigate the various synthesis paths leading to their manufacture and to evaluate the potential use of readily purchasable precursors. The aim of this work was to assess the synthesis of Ethylene Glycol Dinitrate (EGDN), a liquid nitrate ester explosive, using commercially available precursors. The characteristics of the synthetic process (ease, yield), the chemical properties of the synthesized product (purity, spectra) and its explosive properties (sensitivities, detonability) were investigated. Comparisons are drawn between these products and the product obtained using laboratory ingredients. Three ingredients have been used: 1) ethylene glycol, laboratory grade, 2) ready to use, commercial coolant fluid, and 3) ethylene glycol extracted from commercial coolant fluid. The chemical composition and purity of the synthesized liquid explosive was analyzed by Gas Chromatography-Mass Spectrometry (GCMS), and infrared spectroscopy (IR). Differential Scanning Calorimetric (DSC) analysis allowed the heat of decomposition and activation energies to be assessed. The Ozawa and Kissinger models were used. The explosive properties of the pure synthesized products and comparable other explosives, have been tested. The potential use as a priming charge or as a main charge was assessed.
KW - Activation energy
KW - Detonation tests
KW - Egdn
KW - Liquid explosive
KW - Precursor
UR - http://www.scopus.com/inward/record.url?scp=84930915489&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:84930915489
SN - 1733-7178
VL - 12
SP - 287
EP - 305
JO - Central European Journal of Energetic Materials
JF - Central European Journal of Energetic Materials
IS - 2
ER -