@inproceedings{a2b3dc4ec6094ff881cbd6bbea52227e,
title = "Detection of vehicles in shadow areas using combined hyperspectral and lidar data",
abstract = "In an effort to overcome the limitations of small target detection in complex urban scene, complementary data sets are combined to provide additional insight about a particular scene. This paper presents a method based on shape/spectral integration (SSI) decision level fusion algorithm to improve the detection of vehicles in semi and deep shadow areas. A four steps process combines high resolution LIDAR and hyperspectral data to classify shadow areas, segment vehicles in LIDAR data, detect spectral anomalies and improves vehicle detection. The SSI decision level fusion algorithm was shown to outperform detection using a single data set and the utility of shape information was shown to be a way to enhance spectral target detection in complex urban scenes.",
keywords = "3D LIDAR, Target detection, anomaly detection, fusion, hyperspectral",
author = "M. Shimoni and G. Tolt and Christiaan Perneel and J. Ahlberg",
year = "2011",
doi = "10.1109/IGARSS.2011.6050214",
language = "English",
isbn = "9781457710056",
series = "International Geoscience and Remote Sensing Symposium (IGARSS)",
pages = "4427--4430",
booktitle = "2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011 - Proceedings",
note = "2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011 ; Conference date: 24-07-2011 Through 29-07-2011",
}