D4SC: Deep Supervised Semantic Segmentation for Seabed Characterisation in Low-Label Regime

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Downloads (Pure)

Abstract

Seabed characterisation consists in the study of the physical and biological properties of the bottom of the oceans. It is effectively achieved with sonar, a remote sensing method that captures acoustic backscatter of the seabed. Classical Machine Learning (ML) and Deep Learning (DL) research have failed to successfully address the automatic mapping of the seabed from noisy sonar data. This work introduces the Deep Supervised Semantic Segmentation model for Seabed Characterisation (D4SC), a novel U-Net-like model tailored to such data and low-label regime, and proposes a new end-to-end processing pipeline for seabed semantic segmentation. That dual contribution achieves state-of-the-art results on a high resolution Synthetic Aperture Sonar (SAS) survey dataset.

Original languageEnglish
Title of host publicationIGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6932-6935
Number of pages4
ISBN (Electronic)9798350320107
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, United States
Duration: 16 Jul 202321 Jul 2023
https://2023.ieeeigarss.org/

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2023-July

Conference

Conference2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
Abbreviated titleIGARSS 2023
Country/TerritoryUnited States
CityPasadena
Period16/07/2321/07/23
Internet address

Keywords

  • Deep Learning
  • Seabed
  • Semantic Segmentation
  • Synthetic Aperture Sonar

Fingerprint

Dive into the research topics of 'D4SC: Deep Supervised Semantic Segmentation for Seabed Characterisation in Low-Label Regime'. Together they form a unique fingerprint.

Cite this