Coupling and matching study of the ICRF antenna for W7-X

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A tight antenna plug consisting in a pair of straps with strong pre-matching covers the first selected frequency band (25-38MHz) for W7-X and provides the toroidal phasings for heating, current drive and wall conditioning. Another plug-in with two short strap triplets is devoted for operation around 76MHz. The antenna coupling to a reference plasma profile is first analyzed by means of the coupling code ANTITER II. It shows the radiation power spectra for the different phasing cases and indicates the problem of the edge power deposition through the Alfven resonance occurring when the operating frequency is lower than the majority cyclotron frequency. Matrices provided by the TOPICA code are used for the matching-decoupling study of the first antenna plug. The large mutual coupling between the 2 straps is counterbalanced by the use of a decoupler. Finally the tunable 5-port junction used to feed in parallel each triplet of the second plug-in is analyzed by means of MWS simulation together with its decoupling-matching system.

Original languageEnglish
Title of host publicationRadiofrequency Power in Plasmas - Proceedings of the 20th Topical Conference
PublisherAmerican Institute of Physics Inc.
Pages354-357
Number of pages4
ISBN (Print)9780735412101
DOIs
Publication statusPublished - 2014
Event20th Topical Conference on Radiofrequency Power in Plasmas - Sorrento, Italy
Duration: 25 Jun 201328 Jun 2013

Publication series

NameAIP Conference Proceedings
Volume1580
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference20th Topical Conference on Radiofrequency Power in Plasmas
Country/TerritoryItaly
CitySorrento
Period25/06/1328/06/13

Keywords

  • 5-ports junction
  • ICRH
  • W7-X. coupling
  • decoupler
  • matching

Fingerprint

Dive into the research topics of 'Coupling and matching study of the ICRF antenna for W7-X'. Together they form a unique fingerprint.

Cite this