An integrated circuit for wireless ambulatory arrhythmia monitoring systems

Hyejung Kim, Refet Firat Yazicioglu, Tom Torfs, Patrick Merken, Chris Van Hoof, Hoi Jun Yoo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

An ECG signal processor (ESP) is proposed for the low energy wireless ambulatory arrhythmia monitoring system. The ECG processor mainly performs filtering, compression, classification and encryption. The data compression flow consisting of skeleton and modified Huffman coding is the essential function to reduce the transmission energy consumption and the memory capacity, which are the most energy consuming part. The classification flow performs the arrhythmia analysis to alert the abnormality. The proposed ESP IC is implemented in 0.18-μm CMOS process and integrated into the wireless arrhythmia monitoring sensor platform. By integration of the ESP, the total system energy reduction is evaluated by 95.6%.

Original languageEnglish
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5409-5412
Number of pages4
ISBN (Print)9781424432967
DOIs
Publication statusPublished - 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: 2 Sept 20096 Sept 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Conference

Conference31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period2/09/096/09/09

Fingerprint

Dive into the research topics of 'An integrated circuit for wireless ambulatory arrhythmia monitoring systems'. Together they form a unique fingerprint.

Cite this