TY - GEN
T1 - Aeroelastic Response Simulation of a 3D Printed High Altitude Propeller
AU - Malim, Ahmed
AU - Mourousias, Nikolaos
AU - Marinus, Benoît G.
AU - Troyer, Tim De
N1 - Publisher Copyright:
© 2021, American Institute of Aeronautics and Astronautics Inc.. All rights reserved.
PY - 2021
Y1 - 2021
N2 - This paper presents a steady aeroelastic simulation of a 3D Printed propeller blade designed for a High Altitude Platform Station (HAPS) by using the Fluid-Structure Interaction (FSI) method. On the fluid side, steady RANS simulations are carried out in ANSYS Fluent at an altitude of 16 km using the spring-based smoothing method to update the mesh. On the structure side, three materials are used to model the blade structure: two 3D-printed materials which are tough PLA and Onyx to print the blade core which is covered by a composite layer, and an aluminum blade as a benchmark. In order to model the 3D printed materials in ANSYS Mechanical, experimental tensile and bending tests have been performed first on dedicated samples according to the relevant standards. The experimentally fed material models are then used to perform tensile simulations on representative blade sections which are in turn compared to experimental tensile tests in order to validate the numerical approach. After several FSI-iterations, the aerodynamic performance of the rigid and the deformed blades are compared. It is found that the thrust and the torque generated by the deformed blades (FSI) are greater than those generated by the rigid blade (CFD only) for all materials. Also, the blade efficiency is impacted positively or negatively depending on the operating point.
AB - This paper presents a steady aeroelastic simulation of a 3D Printed propeller blade designed for a High Altitude Platform Station (HAPS) by using the Fluid-Structure Interaction (FSI) method. On the fluid side, steady RANS simulations are carried out in ANSYS Fluent at an altitude of 16 km using the spring-based smoothing method to update the mesh. On the structure side, three materials are used to model the blade structure: two 3D-printed materials which are tough PLA and Onyx to print the blade core which is covered by a composite layer, and an aluminum blade as a benchmark. In order to model the 3D printed materials in ANSYS Mechanical, experimental tensile and bending tests have been performed first on dedicated samples according to the relevant standards. The experimentally fed material models are then used to perform tensile simulations on representative blade sections which are in turn compared to experimental tensile tests in order to validate the numerical approach. After several FSI-iterations, the aerodynamic performance of the rigid and the deformed blades are compared. It is found that the thrust and the torque generated by the deformed blades (FSI) are greater than those generated by the rigid blade (CFD only) for all materials. Also, the blade efficiency is impacted positively or negatively depending on the operating point.
UR - http://www.scopus.com/inward/record.url?scp=85126785899&partnerID=8YFLogxK
U2 - 10.2514/6.2021-2490
DO - 10.2514/6.2021-2490
M3 - Conference contribution
AN - SCOPUS:85126785899
SN - 9781624106101
T3 - AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021
BT - AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021
Y2 - 2 August 2021 through 6 August 2021
ER -