Very High Resolution Object-Based Land Use-Land Cover Urban Classification Using Extreme Gradient Boosting

Stefanos Georganos, Tais Grippa, Sabine Vanhuysse, Moritz Lennert, Michal Shimoni, Eleonore Wolff

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

In this letter, the recently developed extreme gradient boosting (Xgboost) classifier is implemented in a very high resolution (VHR) object-based urban land use-land cover application. In detail, we investigated the sensitivity of Xgboost to various sample sizes, as well as to feature selection (FS) by applying a standard technique, correlation-based FS. We compared Xgboost with benchmark classifiers such as random forest (RF) and support vector machines (SVMs). The methods are applied to VHR imagery of two sub-Saharan cities of Dakar and Ouagadougou and the village of Vaihingen, Germany. The results demonstrate that Xgboost parameterized with a Bayesian procedure, systematically outperformed RF and SVM, mainly in larger sample sizes.

OriginalspracheEnglisch
Seiten (von - bis)607-611
Seitenumfang5
FachzeitschriftIEEE Geoscience and Remote Sensing Letters
Jahrgang15
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - Apr. 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Very High Resolution Object-Based Land Use-Land Cover Urban Classification Using Extreme Gradient Boosting“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren