UNCOVER: Development of an efficient steganalysis framework for uncovering hidden data in digital media

Vaila Leask, Rémi Cogranne, Dirk Borghys, Helena Bruyninckx

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This paper presents the general goals of Horizon 2020 project UNCOVER, whose overall purpose is to close the gap between academic work and operational needs in the fields of data-hiding. While digital data-hiding is a relatively new area of research, our motivation in this project has been rooted in the growing gap between the academic community and the operational needs of a "real-life"scenario of object inspection in order to UNCOVER the presence of data secretly hidden. As well as an oversight into the structure of UNCOVER, our paper presents an empirical study on the impact of specifically training a detection method for a given data-hiding scheme, the so-called Stego-Source Mismatch, as an example of unexplored issues that raises important and mostly ignored consequences within the operational context the UNCOVER project targets.

OriginalspracheEnglisch
TitelProceedings of the 17th International Conference on Availability, Reliability and Security, ARES 2022
Herausgeber (Verlag)Association for Computing Machinery
ISBN (elektronisch)9781450396707
DOIs
PublikationsstatusVeröffentlicht - 23 Aug. 2022
Veranstaltung17th International Conference on Availability, Reliability and Security, ARES 2022 - Vienna, Österreich
Dauer: 23 Aug. 202226 Aug. 2022

Publikationsreihe

NameACM International Conference Proceeding Series

Konferenz

Konferenz17th International Conference on Availability, Reliability and Security, ARES 2022
Land/GebietÖsterreich
OrtVienna
Zeitraum23/08/2226/08/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „UNCOVER: Development of an efficient steganalysis framework for uncovering hidden data in digital media“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren