Soil moisture variability effect on GPR data

M. R. Ardekani, X. Neyt, D. Benedetto, E. Slob, B. Wesemael, P. Bogaert, C. Craeye, S. Lambot

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In this paper the effect of local variability of soil moisture within the antenna footprint on GPR data is studied. A combination of GprMax3D with GPR full-wave model of Lambot and André (2013) is used for an errorless set of measurements. The GprMax3D simulations are used as real GPR measurements regarding several physical-based configurations. The Greens functions of the simulated data are extracted using calibrations based on GPR full-wave models. The inversion results of horizontal local soil moisture variability focusing on the surface wavelet reflection are compared with the averaged soil moisture values within different antenna footprints which led to the antenna footprint of -9 dB as the best. Finally, the inversion results of the vertical soil moisture variability shows significant effect of shallow soil moisture layering on the GPR-retrieved soil moisture values, which is highly correlated to the antenna height from the ground surface.

OriginalspracheEnglisch
TitelProceedings of the 15th International Conference on Ground Penetrating Radar, GPR 2014
Redakteure/-innenLara Pajewski, Christophe Craeye, Antonis Giannopoulos, Frederic Andre, Sebastien Lambot, Evert Slob
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten214-217
Seitenumfang4
ISBN (elektronisch)9781479967896
DOIs
PublikationsstatusVeröffentlicht - 1 Dez. 2014
Veranstaltung15th International Conference on Ground Penetrating Radar, GPR 2014 - Brussels, Belgien
Dauer: 30 Juni 20144 Juli 2014

Publikationsreihe

NameProceedings of the 15th International Conference on Ground Penetrating Radar, GPR 2014

Konferenz

Konferenz15th International Conference on Ground Penetrating Radar, GPR 2014
Land/GebietBelgien
OrtBrussels
Zeitraum30/06/144/07/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Soil moisture variability effect on GPR data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren