Simultaneous Measurement Imputation and Outcome Prediction for Achilles Tendon Rupture Rehabilitation

Charles Hamesse, Ruibo Tu, Paul Ackermann, Hedvig Kjellström, Cheng Zhang

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

Abstract

Achilles Tendon Rupture (ATR) is one of the typical soft tissue injuries. Rehabilitation after such a musculoskeletal injury remains a prolonged process with a very variable outcome. Accurately predicting rehabilitation outcome is crucial for treatment decision support. However, it is challenging to train an automatic method for predicting the ATR rehabilitation outcome from treatment data, due to a massive amount of missing entries in the data recorded from ATR patients, as well as complex nonlinear relations between measurements and outcomes. In this work, we design an end-to-end probabilistic framework to impute missing data entries and predict rehabilitation outcomes simultaneously. We evaluate our model on a real-life ATR clinical cohort, comparing with various baselines. The proposed method demonstrates its clear superiority over traditional methods which typically perform imputation and prediction in two separate stages.

OriginalspracheEnglisch
Seiten (von - bis)614-640
Seitenumfang27
FachzeitschriftProceedings of Machine Learning Research
Jahrgang106
PublikationsstatusVeröffentlicht - 2019
Veranstaltung4th Machine Learning for Healthcare Conference, MLHC 2019 - Ann Arbor, USA/Vereinigte Staaten
Dauer: 9 Aug. 201910 Aug. 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Simultaneous Measurement Imputation and Outcome Prediction for Achilles Tendon Rupture Rehabilitation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren