Relating probability distributions using geodesic least squares regression: Application to edge-localized modes in fusion plasmas

JET Contributors

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Geodesic least squares regression (GLS) is a new robust, but simple regression technique based on minimization of the Rao geodesic distance on a probabilistic manifold. It is particularly useful in the presence of large or unknown sources of uncertainty, as it relates probability distributions rather than individual measurements. The GLS method is employed here to estimate the dependence between the probability distributions of two important characteristics of a repetitive instability occurring in the boundary region of fusion plasmas, namely the edge-localized mode (ELM). Specifically, we study the relation between the plasma energy loss following an ELM and the time since the previous ELM. GLS is shown to produce consistent results, whether using measurements on individual ELMs or averaged quantities, even in the presence of questionable modeling assumptions. The method is illustrated using the pseudosphere as an intuitive model of the Gaussian manifold.

OriginalspracheEnglisch
TitelBayesian Inference and Maximum Entropy Methods in Science and Engineering
UntertitelProceedings of the 36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, MaxEnt 2016
Redakteure/-innenGeert Verdoolaege
Herausgeber (Verlag)American Institute of Physics Inc.
ISBN (elektronisch)9780735415270
DOIs
PublikationsstatusVeröffentlicht - 9 Juni 2017
Veranstaltung36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, MaxEnt 2016 - Ghent, Belgien
Dauer: 10 Juli 201615 Juli 2016

Publikationsreihe

NameAIP Conference Proceedings
Band1853
ISSN (Print)0094-243X
ISSN (elektronisch)1551-7616

Konferenz

Konferenz36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, MaxEnt 2016
Land/GebietBelgien
OrtGhent
Zeitraum10/07/1615/07/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Relating probability distributions using geodesic least squares regression: Application to edge-localized modes in fusion plasmas“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren