RECOVERING FROM CATASTROPHIC RECEPTIVE FIELD OVERFLOW IN SEMANTIC SEGMENTATION OF HIGH RESOLUTION IMAGES: APPLICATION TO SEABED CHARACTERIZATION

Publikation: Unpublished contribution to conferencePapierBegutachtung

Abstract

This paper addresses a critical issue in seabed characterization with deep learning semantic segmentation using high-resolution Synthetic Aperture Sonar (SAS) data, that we call Catastrophic Receptive Field Overflow (CRFO). We propose novel methods, including Mosaic Augmentation and Homogeneous Patch Rejection, to (1) effectively mitigate CRFO and (2) enhance model performance. Through experiments on real-world SAS data, we investigate the origins of CRFO, revealing its dependence on model architectures and data characteristics. The presented solutions exhibit promising results, whether measured in terms of Overall Accuracy or the reliability of models in inference across various image input sizes or aspect ratios, in the face of new proposed metrics. These findings provide valuable insights for addressing CRFO challenges in tasks involving relatively homogeneous datasets.

OriginalspracheEnglisch
Seiten9561-9565
Seitenumfang5
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, Griechenland
Dauer: 7 Juli 202412 Juli 2024

Konferenz

Konferenz2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024
Land/GebietGriechenland
OrtAthens
Zeitraum7/07/2412/07/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „RECOVERING FROM CATASTROPHIC RECEPTIVE FIELD OVERFLOW IN SEMANTIC SEGMENTATION OF HIGH RESOLUTION IMAGES: APPLICATION TO SEABED CHARACTERIZATION“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren