Abstract

This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique for ion cyclotron heating and fast-ion generation in multi-ion species plasmas. The theoretical section provides practical recipes for selecting the plasma composition to realize three-ion ICRF scenarios, including two equivalent possibilities for the choice of resonant absorbers that have been identified. The theoretical findings have been convincingly confirmed by the proof-of-principle experiments in mixed H-D plasmas on the Alcator C-Mod and JET tokamaks, using thermal 3He and fast D ions from neutral beam injection as resonant absorbers. Since 2018, significant progress has been made on the ASDEX Upgrade and JET tokamaks in H-4He and H-D plasmas, guided by the ITER needs. Furthermore, the scenario was also successfully applied in JET D-3He plasmas as a technique to generate fusion-born alpha particles and study effects of fast ions on plasma confinement under ITER-relevant plasma heating conditions. Tuned for the central deposition of ICRF power in a small region in the plasma core of large devices such as JET, three-ion ICRF scenarios are efficient in generating large populations of passing fast ions and modifying the q-profile. Recent experimental and modeling developments have expanded the use of three-ion scenarios from dedicated ICRF studies to a flexible tool with a broad range of different applications in fusion research.

OriginalspracheEnglisch
Aufsatznummer020501
FachzeitschriftPhysics of Plasmas
Jahrgang28
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 1 Feb. 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Physics and applications of three-ion ICRF scenarios for fusion research“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren