Abstract
A new scheme to perform stateless ice/sea discrimination in ERS scatterometer data is proposed. This method consists in combining several methods proposed in the literature using a Bayesian framework. Each of the combined method is first reviewed in a consistent framework. In particular, the ice/sea probability according to each individual criterion is extracted using a neural network. The proposed method is shown to provide acceptable results even without taking into account historic data, i.e. without performing temporal averaging.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 566 |
Seiten (von - bis) | 877-884 |
Seitenumfang | 8 |
Fachzeitschrift | European Space Agency, (Special Publication) ESA SP |
Ausgabenummer | 572 |
Publikationsstatus | Veröffentlicht - 2005 |
Veranstaltung | 2004 Envisat and ERS Symposium - Salzburg, Österreich Dauer: 6 Sept. 2004 → 10 Sept. 2004 |