Multivariate texture discrimination using a principal geodesic classifier

A. Shabbir, G. Verdoolaege

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

A new texture discrimination method is presented for classification and retrieval of colored textures represented in the wavelet domain. The interband correlation structure is modeled by multivariate probability models which constitute a Riemannian manifold. The presented method considers the shape of the class on the manifold by determining the principal geodesic of each class. The method, which we call principal geodesic classification, then determines the shortest distance from a test texture to the principal geodesic of each class. We use the Rao geodesic distance (GD) for calculating distances on the manifold. We compare the performance of the proposed method with distance-to-centroid and k-nearest neighbor classifiers and of the GD with the Euclidean distance. The principal geodesic classifier coupled with the GD yields better results, indicating the usefulness of effectively and concisely quantifying the variability of the classes in the probabilistic feature space.

OriginalspracheEnglisch
Titel2015 IEEE International Conference on Image Processing, ICIP 2015 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3550-3554
Seitenumfang5
ISBN (elektronisch)9781479983391
DOIs
PublikationsstatusVeröffentlicht - 9 Dez. 2015
VeranstaltungIEEE International Conference on Image Processing, ICIP 2015 - Quebec City, Kanada
Dauer: 27 Sept. 201530 Sept. 2015

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
Band2015-December
ISSN (Print)1522-4880

Konferenz

KonferenzIEEE International Conference on Image Processing, ICIP 2015
Land/GebietKanada
OrtQuebec City
Zeitraum27/09/1530/09/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multivariate texture discrimination using a principal geodesic classifier“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren