Human-in-the-loop for autonomous underwater threat recognition

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In this paper, human expert operators and automated classification algorithms are charged with the task of analyzing sonar images collected during real mine countermeasures exercises in order to detect and classify targets. Images are collected using synthetic aperture sonar (SAS) and side scan sonar (SSS), covering a test area on the Belgian Continental Shelf, between the Thorton bank and the Goote Bank. A seafloor segmentation map of this area, calculated using lacunarity and representing how difficult or how benign the seafloor is for object-recognition, is used as a new strategy in order to divide the database between operator and computer. Results demonstrate the utility of considering the human operator as an integral part of the automatic underwater object recognition process, and demonstrate how automated algorithms can extend and complement human performances.

OriginalspracheEnglisch
TitelOCEANS 2018 MTS/IEEE Charleston, OCEAN 2018
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781538648148
DOIs
PublikationsstatusVeröffentlicht - 7 Jan. 2019
VeranstaltungOCEANS 2018 MTS/IEEE Charleston, OCEANS 2018 - Charleston, USA/Vereinigte Staaten
Dauer: 22 Okt. 201825 Okt. 2018

Publikationsreihe

NameOCEANS 2018 MTS/IEEE Charleston, OCEAN 2018

Konferenz

KonferenzOCEANS 2018 MTS/IEEE Charleston, OCEANS 2018
Land/GebietUSA/Vereinigte Staaten
OrtCharleston
Zeitraum22/10/1825/10/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Human-in-the-loop for autonomous underwater threat recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren