Green Area Index and Soil Moisture Retrieval in Maize Fields Using Multi-Polarized C-and L-Band SAR Data and the Water Cloud Model

Jean Bouchat, Emma Tronquo, Anne Orban, Xavier Neyt, Niko E.C. Verhoest, Pierre Defourny

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

1 Downloads (Pure)

Abstract

The green area index (GAI) and the soil moisture under the canopy are two key variables for agricultural monitoring. The current most accurate GAI estimation methods exploit optical data and are rendered ineffective in the case of frequent cloud cover. Synthetic aperture radar (SAR) measurements could allow the remote estimation of both variables at the parcel level, on a large scale and regardless of clouds. In this study, several methods were implemented and tested for the simultaneous estimation of both variables using the water cloud model (WCM) and dual-polarized radar backscatter measurements. The methods were tested on the BELSAR-Campaign data set consisting of in-situ measurements of bio-geophysical variables of vegetation and soil in maize fields combined with multi-polarized C-and L-band SAR data from Sentinel-1 and BELSAR. Accurate GAI estimates were obtained using a random forest regressor for the inversion of a pair of WCMs calibrated using cross and vertical co-polarized SAR data in L-and C-band, with correlation coefficients of 0.79 and 0.65 and RMSEs of 0.77 m2 m−2 and 0.98 m2 m−2, respectively, between estimates and in-situ measurements. The WCM, however, proved inadequate for soil moisture monitoring in the conditions of the campaign. These promising results indicate that GAI retrieval in maize crops using only dual-polarized radar data could successfully substitute for estimates derived from optical data.

OriginalspracheEnglisch
Aufsatznummer2496
Seitenumfang24
FachzeitschriftRemote Sensing
Jahrgang14
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - 1 Mai 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Green Area Index and Soil Moisture Retrieval in Maize Fields Using Multi-Polarized C-and L-Band SAR Data and the Water Cloud Model“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren