Fusion scheme for automatic and large-scaled built-up mapping

Yann Forget, Michal Shimoni, Juanfran Lopez, Catherine Linard, Marius Gilbert

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

As more and more geospatial data are produced, Big Earth data is becoming a new key to the understanding of the Earth. Such opportunity also comes with new issues and challenges related to the massive and heteregenous amount of data to process and to analyse. The present work explores the use of three types of Earth Observation (EO) data in order to automatically classify built and non-built areas in Africa using a machine learning classifier: SAR (Sentinel) and optical (Landsat) imagery, and the OpenStreetMap (OSM) database as training data. Experimental results in ten african cities show that the use of satellite data from multiple sensors improves the performance of the classifiers in these areas. They also show that using crowd-sourced geospatial databases such as OSM as training data leads to similar accuracies than when relying on field surveys or hand-digitalized datasets.

OriginalspracheEnglisch
Titel2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2072-2075
Seitenumfang4
ISBN (elektronisch)9781538671504
DOIs
PublikationsstatusVeröffentlicht - 31 Okt. 2018
Veranstaltung38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, Spanien
Dauer: 22 Juli 201827 Juli 2018

Publikationsreihe

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Band2018-July

Konferenz

Konferenz38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
Land/GebietSpanien
OrtValencia
Zeitraum22/07/1827/07/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fusion scheme for automatic and large-scaled built-up mapping“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren