Extraction and Processing of Geographic Data for the Automatic Generation of 3D Traffic Environments

Ben de Schampheleire, Benoît Pairet, Rob Haelterman

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The process of generating annotated data for deep neural networks is labor-intensive and time-consuming. To address this challenge, a potential solution lies in training the neural network within a simulated environment. Since creating large and detailed environments by hand is not straightforward and sometimes even unfeasible, the generation process is often automated. In this work, we propose a pipeline that enables the automatic generation of three-dimensional computer-generated worlds based on geographic data. To narrow down the scope of this vast domain, we concentrate the research on the development of traffic scenes. Therefore, the proposed pipeline combines data from the open-source platform OpenStreetMap and satellite imagery in the visual portion of the electromagnetic spectrum. Ultimately, a virtual traffic scene is successfully generated with a vast potential for various applications.

OriginalspracheEnglisch
TitelModelling and Simulation 2023 - European Simulation and Modelling Conference 2023, ESM 2023
Redakteure/-innenRob Vingerhoeds, Pierre de Saqui-Sannes
Herausgeber (Verlag)EUROSIS
Seiten407-412
Seitenumfang6
ISBN (elektronisch)9789492859280
PublikationsstatusVeröffentlicht - 2023
Veranstaltung37th Annual European Simulation and Modelling Conference, ESM 2023 - Toulouse, Frankreich
Dauer: 24 Okt. 202326 Okt. 2023

Publikationsreihe

NameModelling and Simulation 2023 - European Simulation and Modelling Conference 2023, ESM 2023

Konferenz

Konferenz37th Annual European Simulation and Modelling Conference, ESM 2023
Land/GebietFrankreich
OrtToulouse
Zeitraum24/10/2326/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Extraction and Processing of Geographic Data for the Automatic Generation of 3D Traffic Environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren