Estimation of the bullet depth of penetration based on the numerical integration of stochastic differential equation

Beya Tahenti, Frederik Coghe, Rachid Nasri, Ben Lauwens

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The ballistic performance of materials subjected to projectile impact loading is analyzed based on the determination of the ballistic limit velocity (BLV) or the depth of penetration (DoP). The ballistic assessment of thick plates is generally based on the use of the DoP parameter. Experimental observation reveals the randomness of the DoP of a given projectile penetrating the target material at a given impact velocity. This contribution models the projectile DoP using the Brownian motion approach. The key advantage of the developed model is that it supplies insights about the statistical distribution of the DoP instead of only providing an analytical estimation of this parameter. Furthermore, if perforation starts to occur, this approach might also yield information about the residual velocity and its dispersion. Finally, the model results are compared with the ones produced by the most existing methods.

OriginalspracheEnglisch
TitelProceedings - 30th International Symposium on Ballistics, BALLISTICS 2017
Redakteure/-innenSidney Chocron, James D. Walker
Herausgeber (Verlag)DEStech Publications Inc.
Seiten2330-2341
Seitenumfang12
ISBN (elektronisch)9781605954196
DOIs
PublikationsstatusVeröffentlicht - 2017
Veranstaltung30th International Symposium on Ballistics, BALLISTICS 2017 - Long Beach, USA/Vereinigte Staaten
Dauer: 11 Sept. 201715 Sept. 2017

Publikationsreihe

NameProceedings - 30th International Symposium on Ballistics, BALLISTICS 2017
Band2

Konferenz

Konferenz30th International Symposium on Ballistics, BALLISTICS 2017
Land/GebietUSA/Vereinigte Staaten
OrtLong Beach
Zeitraum11/09/1715/09/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Estimation of the bullet depth of penetration based on the numerical integration of stochastic differential equation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren