Enhanced morphological filtering for wavelet-based changepoint detection

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This paper presents a new method for the detection of abrupt changes (i.e. mean shifts) in time series. It is a follow-up to a previous article by the authors where, for the first time, the possibility of combining the multi-scale analysis capabilities of wavelets with mathematical morphology, a theoretical framework for the analysis of spatial structures, had been explored. The processing chain has been revised and enhanced in order to improve the overall results, and a performance assessment has been carried out to evaluate the accuracy and robustness of the method to noise, also providing a comparison with its original implementation.

OriginalspracheEnglisch
TitelProceedings - 15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019
Redakteure/-innenKokou Yetongnon, Albert Dipanda, Gabriella Sanniti di Baja, Luigi Gallo, Richard Chbeir
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten56-60
Seitenumfang5
ISBN (elektronisch)9781728156866
DOIs
PublikationsstatusVeröffentlicht - Nov. 2019
Veranstaltung15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019 - Sorrento, Italien
Dauer: 26 Nov. 201929 Nov. 2019

Publikationsreihe

NameProceedings - 15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019

Konferenz

Konferenz15th International Conference on Signal Image Technology and Internet Based Systems, SISITS 2019
Land/GebietItalien
OrtSorrento
Zeitraum26/11/1929/11/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Enhanced morphological filtering for wavelet-based changepoint detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren