D4SC: Deep Supervised Semantic Segmentation for Seabed Characterisation in Low-Label Regime

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Downloads (Pure)

Abstract

Seabed characterisation consists in the study of the physical and biological properties of the bottom of the oceans. It is effectively achieved with sonar, a remote sensing method that captures acoustic backscatter of the seabed. Classical Machine Learning (ML) and Deep Learning (DL) research have failed to successfully address the automatic mapping of the seabed from noisy sonar data. This work introduces the Deep Supervised Semantic Segmentation model for Seabed Characterisation (D4SC), a novel U-Net-like model tailored to such data and low-label regime, and proposes a new end-to-end processing pipeline for seabed semantic segmentation. That dual contribution achieves state-of-the-art results on a high resolution Synthetic Aperture Sonar (SAS) survey dataset.

OriginalspracheEnglisch
TitelIGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten6932-6935
Seitenumfang4
ISBN (elektronisch)9798350320107
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, USA/Vereinigte Staaten
Dauer: 16 Juli 202321 Juli 2023
https://2023.ieeeigarss.org/

Publikationsreihe

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Band2023-July

Konferenz

Konferenz2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
KurztitelIGARSS 2023
Land/GebietUSA/Vereinigte Staaten
OrtPasadena
Zeitraum16/07/2321/07/23
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „D4SC: Deep Supervised Semantic Segmentation for Seabed Characterisation in Low-Label Regime“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren