Projekte pro Jahr
Abstract
Seabed characterisation consists in the study of the physical and biological properties of the bottom of the oceans. It is effectively achieved with sonar, a remote sensing method that captures acoustic backscatter of the seabed. Classical Machine Learning (ML) and Deep Learning (DL) research have failed to successfully address the automatic mapping of the seabed from noisy sonar data. This work introduces the Deep Supervised Semantic Segmentation model for Seabed Characterisation (D4SC), a novel U-Net-like model tailored to such data and low-label regime, and proposes a new end-to-end processing pipeline for seabed semantic segmentation. That dual contribution achieves state-of-the-art results on a high resolution Synthetic Aperture Sonar (SAS) survey dataset.
Originalsprache | Englisch |
---|---|
Titel | IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
Seiten | 6932-6935 |
Seitenumfang | 4 |
ISBN (elektronisch) | 9798350320107 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2023 |
Veranstaltung | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, USA/Vereinigte Staaten Dauer: 16 Juli 2023 → 21 Juli 2023 https://2023.ieeeigarss.org/ |
Publikationsreihe
Name | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|---|
Band | 2023-July |
Konferenz
Konferenz | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 |
---|---|
Kurztitel | IGARSS 2023 |
Land/Gebiet | USA/Vereinigte Staaten |
Ort | Pasadena |
Zeitraum | 16/07/23 → 21/07/23 |
Internetadresse |
Fingerprint
Untersuchen Sie die Forschungsthemen von „D4SC: Deep Supervised Semantic Segmentation for Seabed Characterisation in Low-Label Regime“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Laufend
-
DAP/21-11: Automatic, small-scale sea-floor characterization from high-resolution sonar data
Lopera Tellez, O. (Leitende(r) Forscher/-in), Neyt, X. (Leitende(r) Forscher/-in) & Arhant, Y. (Forschende)
1/09/21 → 31/08/25
Projekt: Forschung › Research