Comparative evaluation of hyperspectral anomaly detectors in different types of background

Dirk Borghys, Ingebjorg Kasen, Veronique Achard, Christiaan Perneel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Anomaly detection (AD) in hyperspectral data has received a lot of attention for various applications. The aim of anomaly detection is to detect pixels in the hyperspectral data cube whose spectra differ significantly from the background spectra. Many anomaly detectors have been proposed in literature. They differ by the way the background is characterized and by the method used for determining the difference between the current pixel and the background. The most well-known anomaly detector is the RX detector that calculates the Mahalanobis distance between the pixel under test (PUT) and the background. Global RX characterizes the background of the complete scene by a single multi-variate normal distribution. In many cases this model is not appropriate for describing the background. For that reason a variety of other anomaly detection methods have been developed. This paper examines three classes of anomaly detectors: sub-space methods, local methods and segmentation-based methods. Representative examples of each class are chosen and applied on a set of hyperspectral data with different backgrounds. The results are evaluated and compared.

OriginalspracheEnglisch
TitelAlgorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII
Herausgeber (Verlag)Society of Photo-Optical Instrumentation Engineers
ISBN (Print)9780819490681
DOIs
PublikationsstatusVeröffentlicht - 2012
Veranstaltung18th Annual Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery - Baltimore, MD, USA/Vereinigte Staaten
Dauer: 23 Apr. 201227 Apr. 2012

Publikationsreihe

NameProceedings of SPIE - The International Society for Optical Engineering
Band8390
ISSN (Print)0277-786X
ISSN (elektronisch)1996-756X

Konferenz

Konferenz18th Annual Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery
Land/GebietUSA/Vereinigte Staaten
OrtBaltimore, MD
Zeitraum23/04/1227/04/12

Fingerprint

Untersuchen Sie die Forschungsthemen von „Comparative evaluation of hyperspectral anomaly detectors in different types of background“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren