Combining wavelets and mathematical morphology to detect changes in time series

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In this paper, the problem of detecting changes in time series is addressed. First, the time series is decomposed at multiple scales into wavelet coefficients, in order to obtain a preliminary map of the discontinuities/change points. To select only the relevant ones, we here propose a filtering step based on mathematical morphology. To the best of our knowledge, this is the first time that morphological filters are used in combination with the wavelet transform to address the change point detection problem. The methodology has been validated by analyzing a large set of simulated time series featuring a variable number of change points. For a more comprehensive analysis of the performance, different levels of noise have been also added to the original simulated data.

OriginalspracheEnglisch
Titel2017 Progress In Electromagnetics Research Symposium - Fall, PIERS - FALL 2017 - Proceedings
Herausgeber (Verlag)Electromagnetics Academy
Seiten1015-1020
Seitenumfang6
ISBN (elektronisch)9781538612118
DOIs
PublikationsstatusVeröffentlicht - 2017
Veranstaltung2017 Progress In Electromagnetics Research Symposium - Fall, PIERS - FALL 2017 - Singapore, Singapur
Dauer: 19 Nov. 201722 Nov. 2017

Publikationsreihe

NameProgress in Electromagnetics Research Symposium
Band2017-November
ISSN (Print)1559-9450
ISSN (elektronisch)1931-7360

Konferenz

Konferenz2017 Progress In Electromagnetics Research Symposium - Fall, PIERS - FALL 2017
Land/GebietSingapur
OrtSingapore
Zeitraum19/11/1722/11/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Combining wavelets and mathematical morphology to detect changes in time series“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren