CNN-based object detection and segmentation for maritime domain awareness

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Deep learning algorithms have been proven to be a powerful tool in image and video processing for security and surveillance operations. In a maritime environment, the fusion of electro-optical sensor data with human intelligence plays an important role to counter the security issues. For instance, the situational awareness can be enhanced through an automated system that generates reports on ship identity and signature together with detecting the changes on naval vessels activity. To date, various studies have been set out to explore the performance of deep neural networks using a ship signature database. In the current study, we investigate the Mask R-CNN method to address not only the naval vessel detection using bounding boxes, but also obtaining their segmentation masks. We train and validate the model on data captured by an on-board camera covering the visible spectral band under various weather and light conditions. The experimental results show that Mask RCNN provides high confidence scores on challenging scenarios with a mean average precision of 86.4%. However, the precision of the segmentation mask is slightly deteriorated when the ships are adjacent to the border of the captured scene. Moreover, the network tested on thermal images indicates a decrease in detection and segmentation performance since the training data distribution is not representative enough.

OriginalspracheEnglisch
TitelArtificial Intelligence and Machine Learning in Defense Applications II
Redakteure/-innenJudith Dijk
Herausgeber (Verlag)Society of Photo-Optical Instrumentation Engineers
ISBN (elektronisch)9781510638990
DOIs
PublikationsstatusVeröffentlicht - 2020
VeranstaltungArtificial Intelligence and Machine Learning in Defense Applications II 2020 - Virtual, Online, Großbritannien/Vereinigtes Königreich
Dauer: 21 Sept. 202025 Sept. 2020

Publikationsreihe

NameProceedings of SPIE - The International Society for Optical Engineering
Band11543
ISSN (Print)0277-786X
ISSN (elektronisch)1996-756X

Konferenz

KonferenzArtificial Intelligence and Machine Learning in Defense Applications II 2020
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtVirtual, Online
Zeitraum21/09/2025/09/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „CNN-based object detection and segmentation for maritime domain awareness“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren