Automatic generation of statistical shape models in motion

Sofia Scataglini, Robby Haelterman, Damien Van Tiggelen

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Statistical body shape modeling (SBSM) is a well-known technique to map out the variability of body shapes and is commonly used in 3D anthropometric analyses. In this paper, a new approach to integrate movement acquired by a motion capture system with a body shape is proposed. This was done by selecting landmarks on a body shape model, and predicting a body shape based on features. Then, a virtual skeleton was generated relative to those landmarks. This skeleton was parented to a body shape, allowing to modify its pose and to add pre-recorded motion to different body shapes in a realistic way.

OriginalspracheEnglisch
TitelAdvances in Human Factors in Simulation and Modeling - Proceedings of the AHFE 2018 International Conferences on Human Factors and Simulation and Digital Human Modeling and Applied Optimization
Redakteure/-innenDaniel N. Cassenti
Herausgeber (Verlag)Springer
Seiten170-178
Seitenumfang9
ISBN (Print)9783319942223
DOIs
PublikationsstatusVeröffentlicht - 2019
VeranstaltungAHFE International Conferences on Human Factors and Simulation and Digital Human Modeling and Applied Optimization, 2018 - Orlando, USA/Vereinigte Staaten
Dauer: 21 Juli 201825 Juli 2018

Publikationsreihe

NameAdvances in Intelligent Systems and Computing
Band780
ISSN (Print)2194-5357

Konferenz

KonferenzAHFE International Conferences on Human Factors and Simulation and Digital Human Modeling and Applied Optimization, 2018
Land/GebietUSA/Vereinigte Staaten
OrtOrlando
Zeitraum21/07/1825/07/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automatic generation of statistical shape models in motion“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren