Autoencoder based framework for drone RF signal classification and novelty detection

Sanjoy Basak, Sreeraj Rajendran, Sofie Pollin, Bart Scheers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The increasing use of Unmanned Aerial Vehicles (UAVs) in modern civilian and military applications shows the urgency of having a robust drone detector that detects unseen drone RF signals. Ideally, the system can also classify known RF signals from known drones. This study aims to develop an incremental-learning framework which can classify the known RF signals, and further detect novel RF signals. We propose DE-FEND: A Deep residual network-based autoEncoder FramEwork for known drone signal classification, Novelty Detection, and clustering. The known signal classification and novelty detection are performed in a semi-supervised and unsupervised manner, respectively. We used commercial drone RF signals to evaluate the performance of our framework. With our framework, we obtained 100% novelty detection accuracy at 1.04% False Alarm Rate (FAR) and 97.4% classification accuracy with only 10% labelled samples. Furthermore, we show that our framework outperforms the state-of-The-Art (SoA) algorithms in terms of novelty detection performance.

OriginalspracheEnglisch
Titel25th International Conference on Advanced Communications Technology
UntertitelNew Cyber Security Risks for Enterprise Amidst COVID-19 Pandemic!!, ICACT 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten218-225
Seitenumfang8
ISBN (elektronisch)9791188428106
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung25th International Conference on Advanced Communications Technology, ICACT 2023 - Pyeongchang, Südkorea
Dauer: 19 Feb. 202322 Feb. 2023

Publikationsreihe

NameInternational Conference on Advanced Communication Technology, ICACT
Band2023-February
ISSN (Print)1738-9445

Konferenz

Konferenz25th International Conference on Advanced Communications Technology, ICACT 2023
Land/GebietSüdkorea
OrtPyeongchang
Zeitraum19/02/2322/02/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Autoencoder based framework for drone RF signal classification and novelty detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren