Augmented lagrangian-based approach for dense three-dimensional structure and motion estimation from binocular image sequences

Geert De Cubber, Hichem Sahli

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

In this study, the authors propose a framework for stereo-motion integration for dense depth estimation. They formulate the stereo-motion depth reconstruction problem into a constrained minimisation one. A sequential unconstrained minimisation technique, namely, the augmented Lagrange multiplier (ALM) method has been implemented to address the resulting constrained optimisation problem. ALM has been chosen because of its relative insensitivity to whether the initial design points for a pseudo-objective function are feasible or not. The development of the method and results from solving the stereo-motion integration problem are presented. Although the authors work is not the only one adopting the ALMs framework in the computer vision context, to thier knowledge the presented algorithm is the first to use this mathematical framework in a context of stereo-motion integration. This study describes how the stereo-motion integration problem was cast in a mathematical context and solved using the presented ALM method. Results on benchmark and real visual input data show the validity of the approach.

OriginalspracheEnglisch
Seiten (von - bis)98-109
Seitenumfang12
FachzeitschriftIET Computer Vision
Jahrgang8
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „Augmented lagrangian-based approach for dense three-dimensional structure and motion estimation from binocular image sequences“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren