Accelerating existing non-blind image deblurring techniques through a strap-on limited-memory switched Broyden method

Ichraf Lahouli, Robby Haelterman, Joris Degroote, Michal Shimoni, Geert De Cubber, Rabah Attia

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Video surveillance from airborne platforms can suffer from many sources of blur, like vibration, low-end optics, uneven lighting conditions, etc. Many different algorithms have been developed in the past that aim to recover the deblurred image but often incur substantial CPU-time, which is not always available on-board. This paper shows how a "strap-on" quasi-Newton method can accelerate the convergence of existing iterative methods with little extra overhead while keeping the performance of the original algorithm, thus paving the way for (near) real-time applications using on-board processing.

OriginalspracheEnglisch
Seiten (von - bis)1288-1295
Seitenumfang8
FachzeitschriftIEICE Transactions on Information and Systems
JahrgangE101D
Ausgabenummer5
DOIs
PublikationsstatusVeröffentlicht - Mai 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Accelerating existing non-blind image deblurring techniques through a strap-on limited-memory switched Broyden method“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren