A SEGMENTAL APPROACH TO TEXT-INDEPENDENT SPEAKER VERIFICATION

J. Černocký, D. Petrovska-Delacrétaz, S. Pigeon, Patrick Verlinde, G. Chollet

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Current text-independent speaker verification systems are usually based on modeling globally the probability density function (PDF) of the speaker feature vectors. In this paper, segmental approaches to text-independent speaker verification are discussed. Unlike the schemes based on Large Vocabulary Continuous Speech Recognition (LVCSR) with previously trained phone models, our systems are based on units derived in unsupervised manner using the ALISP (Automatic Language Independent Processing) tools. Speaker modeling is then done independently for each class of speech sounds. Among the techniques to merge the class-dependent scores, linear combination was tested and logistic regression and a method based on the Mixture of Experts technique are under investigation. The experimental results were obtained on the data from the NIST-NSA'98 campaign.

OriginalspracheEnglisch
Titel Proceedings of the 6th European Conference on Speech Communication and Technology, EUROSPEECH 1999
Seiten2207-2210
Seitenumfang4
PublikationsstatusVeröffentlicht - 1999
Veranstaltung6th European Conference on Speech Communication and Technology, EUROSPEECH 1999 - Budapest, Ungarn
Dauer: 5 Sept. 19999 Sept. 1999

Konferenz

Konferenz6th European Conference on Speech Communication and Technology, EUROSPEECH 1999
Land/GebietUngarn
OrtBudapest
Zeitraum5/09/999/09/99

Fingerprint

Untersuchen Sie die Forschungsthemen von „A SEGMENTAL APPROACH TO TEXT-INDEPENDENT SPEAKER VERIFICATION“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren