A generalization of the Runge-Kutta iteration

R. Haelterman, J. Vierendeels, D. Van Heule

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Iterative solvers in combination with multi-grid have been used extensively to solve large algebraic systems. One of the best known is the Runge-Kutta iteration. We show that a generally used formulation [A. Jameson, Numerical solution of the Euler equations for compressible inviscid fluids, in: F. Angrand, A. Dervieux, J.A. Désidéri, R. Glowinski (Eds.), Numerical Methods for the Euler Equations of Fluid Dynamics, SIAM, Philadelphia, 1985, pp. 199-245] does not allow to form all possible polynomial transmittance functions and we propose a new formulation to remedy this, without using an excessive number of coefficients. After having converted the optimal parameters found in previous studies (e.g. [B. Van Leer, C.H. Tai, K.G. Powell, Design of optimally smoothing multi-stage schemes for the Euler equations, AIAA Paper 89-1923, 1989]) we compare them with those that we obtain when we optimize for an integrated 2-grid V-cycle and show that this results in superior performance using a low number of stages. We also propose a variant of our new formulation that roughly follows the idea of the Martinelli-Jameson scheme [A. Jameson, Analysis and design of numerical schemes for gas dynamics 1, artificial diffusion, upwind biasing, limiter and their effect on multigrid convergence, Int. J. Comput. Fluid Dyn. 4 (1995) 171-218; J.V. Lassaline, Optimal multistage relaxation coefficients for multigrid flow solvers. http://www.ryerson.ca/~jvl/papers/cfd2005.pdf] used on the advection-diffusion equation which that can be extended to other types. Gains in the order of 30%-50% have been shown with respect to classical iterative schemes on the advection equation. Better results were also obtained on the advection-diffusion equation than with the Martinelli-Jameson coefficients, but with less than half the number of matrix-vector multiplications.

OriginalspracheEnglisch
Seiten (von - bis)152-167
Seitenumfang16
FachzeitschriftJournal of Computational and Applied Mathematics
Jahrgang224
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 Feb. 2009

Fingerprint

Untersuchen Sie die Forschungsthemen von „A generalization of the Runge-Kutta iteration“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren